Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | gicsym | |- ( R ~=g S -> S ~=g R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |
|
2 | n0 | |- ( ( R GrpIso S ) =/= (/) <-> E. f f e. ( R GrpIso S ) ) |
|
3 | gimcnv | |- ( f e. ( R GrpIso S ) -> `' f e. ( S GrpIso R ) ) |
|
4 | brgici | |- ( `' f e. ( S GrpIso R ) -> S ~=g R ) |
|
5 | 3 4 | syl | |- ( f e. ( R GrpIso S ) -> S ~=g R ) |
6 | 5 | exlimiv | |- ( E. f f e. ( R GrpIso S ) -> S ~=g R ) |
7 | 2 6 | sylbi | |- ( ( R GrpIso S ) =/= (/) -> S ~=g R ) |
8 | 1 7 | sylbi | |- ( R ~=g S -> S ~=g R ) |