Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicsym | |- ( R ~=g S -> S ~=g R ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) | |
| 2 | n0 | |- ( ( R GrpIso S ) =/= (/) <-> E. f f e. ( R GrpIso S ) ) | |
| 3 | gimcnv | |- ( f e. ( R GrpIso S ) -> `' f e. ( S GrpIso R ) ) | |
| 4 | brgici | |- ( `' f e. ( S GrpIso R ) -> S ~=g R ) | |
| 5 | 3 4 | syl | |- ( f e. ( R GrpIso S ) -> S ~=g R ) | 
| 6 | 5 | exlimiv | |- ( E. f f e. ( R GrpIso S ) -> S ~=g R ) | 
| 7 | 2 6 | sylbi | |- ( ( R GrpIso S ) =/= (/) -> S ~=g R ) | 
| 8 | 1 7 | sylbi | |- ( R ~=g S -> S ~=g R ) |