Step |
Hyp |
Ref |
Expression |
1 |
|
gidval.1 |
|- X = ran G |
2 |
|
elex |
|- ( G e. V -> G e. _V ) |
3 |
|
rneq |
|- ( g = G -> ran g = ran G ) |
4 |
3 1
|
eqtr4di |
|- ( g = G -> ran g = X ) |
5 |
|
oveq |
|- ( g = G -> ( u g x ) = ( u G x ) ) |
6 |
5
|
eqeq1d |
|- ( g = G -> ( ( u g x ) = x <-> ( u G x ) = x ) ) |
7 |
|
oveq |
|- ( g = G -> ( x g u ) = ( x G u ) ) |
8 |
7
|
eqeq1d |
|- ( g = G -> ( ( x g u ) = x <-> ( x G u ) = x ) ) |
9 |
6 8
|
anbi12d |
|- ( g = G -> ( ( ( u g x ) = x /\ ( x g u ) = x ) <-> ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
10 |
4 9
|
raleqbidv |
|- ( g = G -> ( A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) <-> A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
11 |
4 10
|
riotaeqbidv |
|- ( g = G -> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
12 |
|
df-gid |
|- GId = ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) ) |
13 |
|
riotaex |
|- ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) e. _V |
14 |
11 12 13
|
fvmpt |
|- ( G e. _V -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
15 |
2 14
|
syl |
|- ( G e. V -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |