| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gidval.1 |  |-  X = ran G | 
						
							| 2 |  | elex |  |-  ( G e. V -> G e. _V ) | 
						
							| 3 |  | rneq |  |-  ( g = G -> ran g = ran G ) | 
						
							| 4 | 3 1 | eqtr4di |  |-  ( g = G -> ran g = X ) | 
						
							| 5 |  | oveq |  |-  ( g = G -> ( u g x ) = ( u G x ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( g = G -> ( ( u g x ) = x <-> ( u G x ) = x ) ) | 
						
							| 7 |  | oveq |  |-  ( g = G -> ( x g u ) = ( x G u ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( g = G -> ( ( x g u ) = x <-> ( x G u ) = x ) ) | 
						
							| 9 | 6 8 | anbi12d |  |-  ( g = G -> ( ( ( u g x ) = x /\ ( x g u ) = x ) <-> ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 10 | 4 9 | raleqbidv |  |-  ( g = G -> ( A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) <-> A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 11 | 4 10 | riotaeqbidv |  |-  ( g = G -> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 12 |  | df-gid |  |-  GId = ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) ) | 
						
							| 13 |  | riotaex |  |-  ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) e. _V | 
						
							| 14 | 11 12 13 | fvmpt |  |-  ( G e. _V -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) | 
						
							| 15 | 2 14 | syl |  |-  ( G e. V -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |