Step |
Hyp |
Ref |
Expression |
1 |
|
gim0to0ALT.a |
|- A = ( Base ` R ) |
2 |
|
gim0to0ALT.b |
|- B = ( Base ` S ) |
3 |
|
gim0to0ALT.n |
|- N = ( 0g ` S ) |
4 |
|
gim0to0ALT.0 |
|- .0. = ( 0g ` R ) |
5 |
|
gimghm |
|- ( F e. ( R GrpIso S ) -> F e. ( R GrpHom S ) ) |
6 |
1 2
|
gimf1o |
|- ( F e. ( R GrpIso S ) -> F : A -1-1-onto-> B ) |
7 |
|
f1of1 |
|- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
8 |
6 7
|
syl |
|- ( F e. ( R GrpIso S ) -> F : A -1-1-> B ) |
9 |
5 8
|
jca |
|- ( F e. ( R GrpIso S ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) ) |
10 |
9
|
anim1i |
|- ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ X e. A ) ) |
11 |
|
df-3an |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) <-> ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ X e. A ) ) |
12 |
10 11
|
sylibr |
|- ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) ) |
13 |
1 2 3 4
|
f1ghm0to0 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) ) |
14 |
12 13
|
syl |
|- ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) ) |