Metamath Proof Explorer


Theorem gim0to0

Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 23-May-2023)

Ref Expression
Hypotheses gim0to0ALT.a
|- A = ( Base ` R )
gim0to0ALT.b
|- B = ( Base ` S )
gim0to0ALT.n
|- N = ( 0g ` S )
gim0to0ALT.0
|- .0. = ( 0g ` R )
Assertion gim0to0
|- ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) )

Proof

Step Hyp Ref Expression
1 gim0to0ALT.a
 |-  A = ( Base ` R )
2 gim0to0ALT.b
 |-  B = ( Base ` S )
3 gim0to0ALT.n
 |-  N = ( 0g ` S )
4 gim0to0ALT.0
 |-  .0. = ( 0g ` R )
5 gimghm
 |-  ( F e. ( R GrpIso S ) -> F e. ( R GrpHom S ) )
6 1 2 gimf1o
 |-  ( F e. ( R GrpIso S ) -> F : A -1-1-onto-> B )
7 f1of1
 |-  ( F : A -1-1-onto-> B -> F : A -1-1-> B )
8 6 7 syl
 |-  ( F e. ( R GrpIso S ) -> F : A -1-1-> B )
9 5 8 jca
 |-  ( F e. ( R GrpIso S ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) )
10 9 anim1i
 |-  ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ X e. A ) )
11 df-3an
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) <-> ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ X e. A ) )
12 10 11 sylibr
 |-  ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) )
13 1 2 3 4 f1ghm0to0
 |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) )
14 12 13 syl
 |-  ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) )