| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gim0to0.a |
|- A = ( Base ` R ) |
| 2 |
|
gim0to0.b |
|- B = ( Base ` S ) |
| 3 |
|
gim0to0.n |
|- N = ( 0g ` S ) |
| 4 |
|
gim0to0.0 |
|- .0. = ( 0g ` R ) |
| 5 |
|
gimghm |
|- ( F e. ( R GrpIso S ) -> F e. ( R GrpHom S ) ) |
| 6 |
1 2
|
gimf1o |
|- ( F e. ( R GrpIso S ) -> F : A -1-1-onto-> B ) |
| 7 |
|
f1of1 |
|- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
| 8 |
6 7
|
syl |
|- ( F e. ( R GrpIso S ) -> F : A -1-1-> B ) |
| 9 |
5 8
|
jca |
|- ( F e. ( R GrpIso S ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) ) |
| 10 |
9
|
anim1i |
|- ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ X e. A ) ) |
| 11 |
|
df-3an |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) <-> ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ X e. A ) ) |
| 12 |
10 11
|
sylibr |
|- ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) ) |
| 13 |
1 2 4 3
|
f1ghm0to0 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) ) |
| 14 |
12 13
|
syl |
|- ( ( F e. ( R GrpIso S ) /\ X e. A ) -> ( ( F ` X ) = N <-> X = .0. ) ) |