| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 2 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 3 | 1 2 | ghmf |  |-  ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 4 |  | frel |  |-  ( F : ( Base ` S ) --> ( Base ` T ) -> Rel F ) | 
						
							| 5 |  | dfrel2 |  |-  ( Rel F <-> `' `' F = F ) | 
						
							| 6 | 4 5 | sylib |  |-  ( F : ( Base ` S ) --> ( Base ` T ) -> `' `' F = F ) | 
						
							| 7 | 3 6 | syl |  |-  ( F e. ( S GrpHom T ) -> `' `' F = F ) | 
						
							| 8 |  | id |  |-  ( F e. ( S GrpHom T ) -> F e. ( S GrpHom T ) ) | 
						
							| 9 | 7 8 | eqeltrd |  |-  ( F e. ( S GrpHom T ) -> `' `' F e. ( S GrpHom T ) ) | 
						
							| 10 | 9 | anim1ci |  |-  ( ( F e. ( S GrpHom T ) /\ `' F e. ( T GrpHom S ) ) -> ( `' F e. ( T GrpHom S ) /\ `' `' F e. ( S GrpHom T ) ) ) | 
						
							| 11 |  | isgim2 |  |-  ( F e. ( S GrpIso T ) <-> ( F e. ( S GrpHom T ) /\ `' F e. ( T GrpHom S ) ) ) | 
						
							| 12 |  | isgim2 |  |-  ( `' F e. ( T GrpIso S ) <-> ( `' F e. ( T GrpHom S ) /\ `' `' F e. ( S GrpHom T ) ) ) | 
						
							| 13 | 10 11 12 | 3imtr4i |  |-  ( F e. ( S GrpIso T ) -> `' F e. ( T GrpIso S ) ) |