Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgim.b | |- B = ( Base ` R ) | |
| isgim.c | |- C = ( Base ` S ) | ||
| Assertion | gimf1o | |- ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isgim.b | |- B = ( Base ` R ) | |
| 2 | isgim.c | |- C = ( Base ` S ) | |
| 3 | 1 2 | isgim | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) | 
| 4 | 3 | simprbi | |- ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> C ) |