Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isgim.b | |- B = ( Base ` R ) |
|
isgim.c | |- C = ( Base ` S ) |
||
Assertion | gimf1o | |- ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgim.b | |- B = ( Base ` R ) |
|
2 | isgim.c | |- C = ( Base ` S ) |
|
3 | 1 2 | isgim | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) |
4 | 3 | simprbi | |- ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> C ) |