Metamath Proof Explorer


Theorem gimf1o

Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses isgim.b
|- B = ( Base ` R )
isgim.c
|- C = ( Base ` S )
Assertion gimf1o
|- ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> C )

Proof

Step Hyp Ref Expression
1 isgim.b
 |-  B = ( Base ` R )
2 isgim.c
 |-  C = ( Base ` S )
3 1 2 isgim
 |-  ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) )
4 3 simprbi
 |-  ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> C )