Description: An isomorphism of groups is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gimghm | |- ( F e. ( R GrpIso S ) -> F e. ( R GrpHom S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) | |
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) | |
| 3 | 1 2 | isgim | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) | 
| 4 | 3 | simplbi | |- ( F e. ( R GrpIso S ) -> F e. ( R GrpHom S ) ) |