Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbs.b | |- B = ( Base ` K ) | |
| glbs.l | |- .<_ = ( le ` K ) | ||
| glbs.g | |- G = ( glb ` K ) | ||
| glbs.k | |- ( ph -> K e. V ) | ||
| glbs.s | |- ( ph -> S e. dom G ) | ||
| Assertion | glbelss | |- ( ph -> S C_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | glbs.b | |- B = ( Base ` K ) | |
| 2 | glbs.l | |- .<_ = ( le ` K ) | |
| 3 | glbs.g | |- G = ( glb ` K ) | |
| 4 | glbs.k | |- ( ph -> K e. V ) | |
| 5 | glbs.s | |- ( ph -> S e. dom G ) | |
| 6 | biid | |- ( ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) | |
| 7 | 1 2 3 6 4 | glbeldm | |- ( ph -> ( S e. dom G <-> ( S C_ B /\ E! x e. B ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) ) ) | 
| 8 | 5 7 | mpbid | |- ( ph -> ( S C_ B /\ E! x e. B ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) ) | 
| 9 | 8 | simpld | |- ( ph -> S C_ B ) |