Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | glbs.b | |- B = ( Base ` K ) |
|
glbs.l | |- .<_ = ( le ` K ) |
||
glbs.g | |- G = ( glb ` K ) |
||
glbs.k | |- ( ph -> K e. V ) |
||
glbs.s | |- ( ph -> S e. dom G ) |
||
Assertion | glbelss | |- ( ph -> S C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbs.b | |- B = ( Base ` K ) |
|
2 | glbs.l | |- .<_ = ( le ` K ) |
|
3 | glbs.g | |- G = ( glb ` K ) |
|
4 | glbs.k | |- ( ph -> K e. V ) |
|
5 | glbs.s | |- ( ph -> S e. dom G ) |
|
6 | biid | |- ( ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) |
|
7 | 1 2 3 6 4 | glbeldm | |- ( ph -> ( S e. dom G <-> ( S C_ B /\ E! x e. B ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) ) ) |
8 | 5 7 | mpbid | |- ( ph -> ( S C_ B /\ E! x e. B ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) ) |
9 | 8 | simpld | |- ( ph -> S C_ B ) |