Description: Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | glbval.b | |- B = ( Base ` K ) |
|
glbval.l | |- .<_ = ( le ` K ) |
||
glbval.g | |- G = ( glb ` K ) |
||
glbval.p | |- ( ps <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) |
||
glbva.k | |- ( ph -> K e. V ) |
||
glbval.s | |- ( ph -> S e. dom G ) |
||
Assertion | glbeu | |- ( ph -> E! x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbval.b | |- B = ( Base ` K ) |
|
2 | glbval.l | |- .<_ = ( le ` K ) |
|
3 | glbval.g | |- G = ( glb ` K ) |
|
4 | glbval.p | |- ( ps <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) |
|
5 | glbva.k | |- ( ph -> K e. V ) |
|
6 | glbval.s | |- ( ph -> S e. dom G ) |
|
7 | 1 2 3 4 5 | glbeldm | |- ( ph -> ( S e. dom G <-> ( S C_ B /\ E! x e. B ps ) ) ) |
8 | 6 7 | mpbid | |- ( ph -> ( S C_ B /\ E! x e. B ps ) ) |
9 | 8 | simprd | |- ( ph -> E! x e. B ps ) |