Description: Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbval.b | |- B = ( Base ` K ) | |
| glbval.l | |- .<_ = ( le ` K ) | ||
| glbval.g | |- G = ( glb ` K ) | ||
| glbval.p | |- ( ps <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) | ||
| glbva.k | |- ( ph -> K e. V ) | ||
| glbval.s | |- ( ph -> S e. dom G ) | ||
| Assertion | glbeu | |- ( ph -> E! x e. B ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | glbval.b | |- B = ( Base ` K ) | |
| 2 | glbval.l | |- .<_ = ( le ` K ) | |
| 3 | glbval.g | |- G = ( glb ` K ) | |
| 4 | glbval.p | |- ( ps <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) ) | |
| 5 | glbva.k | |- ( ph -> K e. V ) | |
| 6 | glbval.s | |- ( ph -> S e. dom G ) | |
| 7 | 1 2 3 4 5 | glbeldm | |- ( ph -> ( S e. dom G <-> ( S C_ B /\ E! x e. B ps ) ) ) | 
| 8 | 6 7 | mpbid | |- ( ph -> ( S C_ B /\ E! x e. B ps ) ) | 
| 9 | 8 | simprd | |- ( ph -> E! x e. B ps ) |