Metamath Proof Explorer


Theorem glbeu

Description: Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbval.b
|- B = ( Base ` K )
glbval.l
|- .<_ = ( le ` K )
glbval.g
|- G = ( glb ` K )
glbval.p
|- ( ps <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) )
glbva.k
|- ( ph -> K e. V )
glbval.s
|- ( ph -> S e. dom G )
Assertion glbeu
|- ( ph -> E! x e. B ps )

Proof

Step Hyp Ref Expression
1 glbval.b
 |-  B = ( Base ` K )
2 glbval.l
 |-  .<_ = ( le ` K )
3 glbval.g
 |-  G = ( glb ` K )
4 glbval.p
 |-  ( ps <-> ( A. y e. S x .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ x ) ) )
5 glbva.k
 |-  ( ph -> K e. V )
6 glbval.s
 |-  ( ph -> S e. dom G )
7 1 2 3 4 5 glbeldm
 |-  ( ph -> ( S e. dom G <-> ( S C_ B /\ E! x e. B ps ) ) )
8 6 7 mpbid
 |-  ( ph -> ( S C_ B /\ E! x e. B ps ) )
9 8 simprd
 |-  ( ph -> E! x e. B ps )