Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | glbprop.b | |- B = ( Base ` K ) |
|
glbprop.l | |- .<_ = ( le ` K ) |
||
glbprop.u | |- U = ( glb ` K ) |
||
glbprop.k | |- ( ph -> K e. V ) |
||
glbprop.s | |- ( ph -> S e. dom U ) |
||
glble.x | |- ( ph -> X e. S ) |
||
Assertion | glble | |- ( ph -> ( U ` S ) .<_ X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbprop.b | |- B = ( Base ` K ) |
|
2 | glbprop.l | |- .<_ = ( le ` K ) |
|
3 | glbprop.u | |- U = ( glb ` K ) |
|
4 | glbprop.k | |- ( ph -> K e. V ) |
|
5 | glbprop.s | |- ( ph -> S e. dom U ) |
|
6 | glble.x | |- ( ph -> X e. S ) |
|
7 | breq2 | |- ( y = X -> ( ( U ` S ) .<_ y <-> ( U ` S ) .<_ X ) ) |
|
8 | 1 2 3 4 5 | glbprop | |- ( ph -> ( A. y e. S ( U ` S ) .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ ( U ` S ) ) ) ) |
9 | 8 | simpld | |- ( ph -> A. y e. S ( U ` S ) .<_ y ) |
10 | 7 9 6 | rspcdva | |- ( ph -> ( U ` S ) .<_ X ) |