Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbprop.b | |- B = ( Base ` K ) | |
| glbprop.l | |- .<_ = ( le ` K ) | ||
| glbprop.u | |- U = ( glb ` K ) | ||
| glbprop.k | |- ( ph -> K e. V ) | ||
| glbprop.s | |- ( ph -> S e. dom U ) | ||
| glble.x | |- ( ph -> X e. S ) | ||
| Assertion | glble | |- ( ph -> ( U ` S ) .<_ X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | glbprop.b | |- B = ( Base ` K ) | |
| 2 | glbprop.l | |- .<_ = ( le ` K ) | |
| 3 | glbprop.u | |- U = ( glb ` K ) | |
| 4 | glbprop.k | |- ( ph -> K e. V ) | |
| 5 | glbprop.s | |- ( ph -> S e. dom U ) | |
| 6 | glble.x | |- ( ph -> X e. S ) | |
| 7 | breq2 | |- ( y = X -> ( ( U ` S ) .<_ y <-> ( U ` S ) .<_ X ) ) | |
| 8 | 1 2 3 4 5 | glbprop | |- ( ph -> ( A. y e. S ( U ` S ) .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ ( U ` S ) ) ) ) | 
| 9 | 8 | simpld | |- ( ph -> A. y e. S ( U ` S ) .<_ y ) | 
| 10 | 7 9 6 | rspcdva | |- ( ph -> ( U ` S ) .<_ X ) |