Metamath Proof Explorer


Theorem glble

Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbprop.b
|- B = ( Base ` K )
glbprop.l
|- .<_ = ( le ` K )
glbprop.u
|- U = ( glb ` K )
glbprop.k
|- ( ph -> K e. V )
glbprop.s
|- ( ph -> S e. dom U )
glble.x
|- ( ph -> X e. S )
Assertion glble
|- ( ph -> ( U ` S ) .<_ X )

Proof

Step Hyp Ref Expression
1 glbprop.b
 |-  B = ( Base ` K )
2 glbprop.l
 |-  .<_ = ( le ` K )
3 glbprop.u
 |-  U = ( glb ` K )
4 glbprop.k
 |-  ( ph -> K e. V )
5 glbprop.s
 |-  ( ph -> S e. dom U )
6 glble.x
 |-  ( ph -> X e. S )
7 breq2
 |-  ( y = X -> ( ( U ` S ) .<_ y <-> ( U ` S ) .<_ X ) )
8 1 2 3 4 5 glbprop
 |-  ( ph -> ( A. y e. S ( U ` S ) .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ ( U ` S ) ) ) )
9 8 simpld
 |-  ( ph -> A. y e. S ( U ` S ) .<_ y )
10 7 9 6 rspcdva
 |-  ( ph -> ( U ` S ) .<_ X )