Step |
Hyp |
Ref |
Expression |
1 |
|
lubpr.k |
|- ( ph -> K e. Poset ) |
2 |
|
lubpr.b |
|- B = ( Base ` K ) |
3 |
|
lubpr.x |
|- ( ph -> X e. B ) |
4 |
|
lubpr.y |
|- ( ph -> Y e. B ) |
5 |
|
lubpr.l |
|- .<_ = ( le ` K ) |
6 |
|
lubpr.c |
|- ( ph -> X .<_ Y ) |
7 |
|
lubpr.s |
|- ( ph -> S = { X , Y } ) |
8 |
|
glbpr.g |
|- G = ( glb ` K ) |
9 |
|
eqid |
|- ( ODual ` K ) = ( ODual ` K ) |
10 |
9
|
odupos |
|- ( K e. Poset -> ( ODual ` K ) e. Poset ) |
11 |
1 10
|
syl |
|- ( ph -> ( ODual ` K ) e. Poset ) |
12 |
9 2
|
odubas |
|- B = ( Base ` ( ODual ` K ) ) |
13 |
9 5
|
oduleval |
|- `' .<_ = ( le ` ( ODual ` K ) ) |
14 |
|
brcnvg |
|- ( ( Y e. B /\ X e. B ) -> ( Y `' .<_ X <-> X .<_ Y ) ) |
15 |
4 3 14
|
syl2anc |
|- ( ph -> ( Y `' .<_ X <-> X .<_ Y ) ) |
16 |
6 15
|
mpbird |
|- ( ph -> Y `' .<_ X ) |
17 |
|
prcom |
|- { X , Y } = { Y , X } |
18 |
7 17
|
eqtrdi |
|- ( ph -> S = { Y , X } ) |
19 |
|
eqid |
|- ( lub ` ( ODual ` K ) ) = ( lub ` ( ODual ` K ) ) |
20 |
11 12 4 3 13 16 18 19
|
lubprdm |
|- ( ph -> S e. dom ( lub ` ( ODual ` K ) ) ) |
21 |
9 8
|
odulub |
|- ( K e. Poset -> G = ( lub ` ( ODual ` K ) ) ) |
22 |
1 21
|
syl |
|- ( ph -> G = ( lub ` ( ODual ` K ) ) ) |
23 |
22
|
dmeqd |
|- ( ph -> dom G = dom ( lub ` ( ODual ` K ) ) ) |
24 |
20 23
|
eleqtrrd |
|- ( ph -> S e. dom G ) |
25 |
22
|
fveq1d |
|- ( ph -> ( G ` S ) = ( ( lub ` ( ODual ` K ) ) ` S ) ) |
26 |
11 12 4 3 13 16 18 19
|
lubpr |
|- ( ph -> ( ( lub ` ( ODual ` K ) ) ` S ) = X ) |
27 |
25 26
|
eqtrd |
|- ( ph -> ( G ` S ) = X ) |
28 |
24 27
|
jca |
|- ( ph -> ( S e. dom G /\ ( G ` S ) = X ) ) |