Metamath Proof Explorer


Theorem goelel3xp

Description: A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023)

Ref Expression
Assertion goelel3xp
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( _om X. ( _om X. _om ) ) )

Proof

Step Hyp Ref Expression
1 goel
 |-  ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) = <. (/) , <. I , J >. >. )
2 peano1
 |-  (/) e. _om
3 2 a1i
 |-  ( ( I e. _om /\ J e. _om ) -> (/) e. _om )
4 opelxpi
 |-  ( ( I e. _om /\ J e. _om ) -> <. I , J >. e. ( _om X. _om ) )
5 3 4 opelxpd
 |-  ( ( I e. _om /\ J e. _om ) -> <. (/) , <. I , J >. >. e. ( _om X. ( _om X. _om ) ) )
6 1 5 eqeltrd
 |-  ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( _om X. ( _om X. _om ) ) )