Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
|- ( A |g B ) = ( |g ` <. A , B >. ) |
2 |
|
opelvvg |
|- ( ( A e. V /\ B e. W ) -> <. A , B >. e. ( _V X. _V ) ) |
3 |
|
opeq2 |
|- ( x = <. A , B >. -> <. 1o , x >. = <. 1o , <. A , B >. >. ) |
4 |
|
df-gona |
|- |g = ( x e. ( _V X. _V ) |-> <. 1o , x >. ) |
5 |
|
opex |
|- <. 1o , <. A , B >. >. e. _V |
6 |
3 4 5
|
fvmpt |
|- ( <. A , B >. e. ( _V X. _V ) -> ( |g ` <. A , B >. ) = <. 1o , <. A , B >. >. ) |
7 |
2 6
|
syl |
|- ( ( A e. V /\ B e. W ) -> ( |g ` <. A , B >. ) = <. 1o , <. A , B >. >. ) |
8 |
1 7
|
eqtrid |
|- ( ( A e. V /\ B e. W ) -> ( A |g B ) = <. 1o , <. A , B >. >. ) |