Step |
Hyp |
Ref |
Expression |
1 |
|
1one2o |
|- 1o =/= 2o |
2 |
1
|
neii |
|- -. 1o = 2o |
3 |
2
|
intnanr |
|- -. ( 1o = 2o /\ <. a , b >. = <. i , u >. ) |
4 |
|
gonafv |
|- ( ( a e. _V /\ b e. _V ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
5 |
4
|
el2v |
|- ( a |g b ) = <. 1o , <. a , b >. >. |
6 |
|
df-goal |
|- A.g i u = <. 2o , <. i , u >. >. |
7 |
5 6
|
eqeq12i |
|- ( ( a |g b ) = A.g i u <-> <. 1o , <. a , b >. >. = <. 2o , <. i , u >. >. ) |
8 |
|
1oex |
|- 1o e. _V |
9 |
|
opex |
|- <. a , b >. e. _V |
10 |
8 9
|
opth |
|- ( <. 1o , <. a , b >. >. = <. 2o , <. i , u >. >. <-> ( 1o = 2o /\ <. a , b >. = <. i , u >. ) ) |
11 |
7 10
|
bitri |
|- ( ( a |g b ) = A.g i u <-> ( 1o = 2o /\ <. a , b >. = <. i , u >. ) ) |
12 |
11
|
necon3abii |
|- ( ( a |g b ) =/= A.g i u <-> -. ( 1o = 2o /\ <. a , b >. = <. i , u >. ) ) |
13 |
3 12
|
mpbir |
|- ( a |g b ) =/= A.g i u |