| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1one2o |
|- 1o =/= 2o |
| 2 |
1
|
neii |
|- -. 1o = 2o |
| 3 |
2
|
intnanr |
|- -. ( 1o = 2o /\ <. a , b >. = <. i , u >. ) |
| 4 |
|
gonafv |
|- ( ( a e. _V /\ b e. _V ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 5 |
4
|
el2v |
|- ( a |g b ) = <. 1o , <. a , b >. >. |
| 6 |
|
df-goal |
|- A.g i u = <. 2o , <. i , u >. >. |
| 7 |
5 6
|
eqeq12i |
|- ( ( a |g b ) = A.g i u <-> <. 1o , <. a , b >. >. = <. 2o , <. i , u >. >. ) |
| 8 |
|
1oex |
|- 1o e. _V |
| 9 |
|
opex |
|- <. a , b >. e. _V |
| 10 |
8 9
|
opth |
|- ( <. 1o , <. a , b >. >. = <. 2o , <. i , u >. >. <-> ( 1o = 2o /\ <. a , b >. = <. i , u >. ) ) |
| 11 |
7 10
|
bitri |
|- ( ( a |g b ) = A.g i u <-> ( 1o = 2o /\ <. a , b >. = <. i , u >. ) ) |
| 12 |
11
|
necon3abii |
|- ( ( a |g b ) =/= A.g i u <-> -. ( 1o = 2o /\ <. a , b >. = <. i , u >. ) ) |
| 13 |
3 12
|
mpbir |
|- ( a |g b ) =/= A.g i u |