| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gonan0 |
|- ( ( a |g b ) e. ( Fmla ` N ) -> N =/= (/) ) |
| 2 |
1
|
adantl |
|- ( ( N e. _om /\ ( a |g b ) e. ( Fmla ` N ) ) -> N =/= (/) ) |
| 3 |
|
nnsuc |
|- ( ( N e. _om /\ N =/= (/) ) -> E. x e. _om N = suc x ) |
| 4 |
|
suceq |
|- ( d = (/) -> suc d = suc (/) ) |
| 5 |
4
|
fveq2d |
|- ( d = (/) -> ( Fmla ` suc d ) = ( Fmla ` suc (/) ) ) |
| 6 |
5
|
eleq2d |
|- ( d = (/) -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc (/) ) ) ) |
| 7 |
5
|
eleq2d |
|- ( d = (/) -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc (/) ) ) ) |
| 8 |
5
|
eleq2d |
|- ( d = (/) -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc (/) ) ) ) |
| 9 |
7 8
|
anbi12d |
|- ( d = (/) -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 10 |
6 9
|
imbi12d |
|- ( d = (/) -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc (/) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) ) |
| 11 |
|
suceq |
|- ( d = c -> suc d = suc c ) |
| 12 |
11
|
fveq2d |
|- ( d = c -> ( Fmla ` suc d ) = ( Fmla ` suc c ) ) |
| 13 |
12
|
eleq2d |
|- ( d = c -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc c ) ) ) |
| 14 |
12
|
eleq2d |
|- ( d = c -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc c ) ) ) |
| 15 |
12
|
eleq2d |
|- ( d = c -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc c ) ) ) |
| 16 |
14 15
|
anbi12d |
|- ( d = c -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc c ) /\ b e. ( Fmla ` suc c ) ) ) ) |
| 17 |
13 16
|
imbi12d |
|- ( d = c -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc c ) -> ( a e. ( Fmla ` suc c ) /\ b e. ( Fmla ` suc c ) ) ) ) ) |
| 18 |
|
suceq |
|- ( d = suc c -> suc d = suc suc c ) |
| 19 |
18
|
fveq2d |
|- ( d = suc c -> ( Fmla ` suc d ) = ( Fmla ` suc suc c ) ) |
| 20 |
19
|
eleq2d |
|- ( d = suc c -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc suc c ) ) ) |
| 21 |
19
|
eleq2d |
|- ( d = suc c -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc suc c ) ) ) |
| 22 |
19
|
eleq2d |
|- ( d = suc c -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc suc c ) ) ) |
| 23 |
21 22
|
anbi12d |
|- ( d = suc c -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc suc c ) /\ b e. ( Fmla ` suc suc c ) ) ) ) |
| 24 |
20 23
|
imbi12d |
|- ( d = suc c -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc suc c ) -> ( a e. ( Fmla ` suc suc c ) /\ b e. ( Fmla ` suc suc c ) ) ) ) ) |
| 25 |
|
suceq |
|- ( d = x -> suc d = suc x ) |
| 26 |
25
|
fveq2d |
|- ( d = x -> ( Fmla ` suc d ) = ( Fmla ` suc x ) ) |
| 27 |
26
|
eleq2d |
|- ( d = x -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc x ) ) ) |
| 28 |
26
|
eleq2d |
|- ( d = x -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc x ) ) ) |
| 29 |
26
|
eleq2d |
|- ( d = x -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc x ) ) ) |
| 30 |
28 29
|
anbi12d |
|- ( d = x -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 31 |
27 30
|
imbi12d |
|- ( d = x -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) ) |
| 32 |
|
peano1 |
|- (/) e. _om |
| 33 |
|
ovex |
|- ( a |g b ) e. _V |
| 34 |
|
isfmlasuc |
|- ( ( (/) e. _om /\ ( a |g b ) e. _V ) -> ( ( a |g b ) e. ( Fmla ` suc (/) ) <-> ( ( a |g b ) e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
| 35 |
32 33 34
|
mp2an |
|- ( ( a |g b ) e. ( Fmla ` suc (/) ) <-> ( ( a |g b ) e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) |
| 36 |
|
eqeq1 |
|- ( x = ( a |g b ) -> ( x = ( i e.g j ) <-> ( a |g b ) = ( i e.g j ) ) ) |
| 37 |
36
|
2rexbidv |
|- ( x = ( a |g b ) -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) ) ) |
| 38 |
|
fmla0 |
|- ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } |
| 39 |
37 38
|
elrab2 |
|- ( ( a |g b ) e. ( Fmla ` (/) ) <-> ( ( a |g b ) e. _V /\ E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) ) ) |
| 40 |
|
gonafv |
|- ( ( a e. _V /\ b e. _V ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 41 |
40
|
el2v |
|- ( a |g b ) = <. 1o , <. a , b >. >. |
| 42 |
41
|
a1i |
|- ( ( i e. _om /\ j e. _om ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 43 |
|
goel |
|- ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) |
| 44 |
42 43
|
eqeq12d |
|- ( ( i e. _om /\ j e. _om ) -> ( ( a |g b ) = ( i e.g j ) <-> <. 1o , <. a , b >. >. = <. (/) , <. i , j >. >. ) ) |
| 45 |
|
1oex |
|- 1o e. _V |
| 46 |
|
opex |
|- <. a , b >. e. _V |
| 47 |
45 46
|
opth |
|- ( <. 1o , <. a , b >. >. = <. (/) , <. i , j >. >. <-> ( 1o = (/) /\ <. a , b >. = <. i , j >. ) ) |
| 48 |
|
1n0 |
|- 1o =/= (/) |
| 49 |
|
eqneqall |
|- ( 1o = (/) -> ( 1o =/= (/) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 50 |
48 49
|
mpi |
|- ( 1o = (/) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 51 |
50
|
adantr |
|- ( ( 1o = (/) /\ <. a , b >. = <. i , j >. ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 52 |
47 51
|
sylbi |
|- ( <. 1o , <. a , b >. >. = <. (/) , <. i , j >. >. -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 53 |
44 52
|
biimtrdi |
|- ( ( i e. _om /\ j e. _om ) -> ( ( a |g b ) = ( i e.g j ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 54 |
53
|
rexlimdva |
|- ( i e. _om -> ( E. j e. _om ( a |g b ) = ( i e.g j ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 55 |
54
|
rexlimiv |
|- ( E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 56 |
55
|
adantl |
|- ( ( ( a |g b ) e. _V /\ E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 57 |
39 56
|
sylbi |
|- ( ( a |g b ) e. ( Fmla ` (/) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 58 |
41
|
a1i |
|- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 59 |
|
gonafv |
|- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( u |g v ) = <. 1o , <. u , v >. >. ) |
| 60 |
58 59
|
eqeq12d |
|- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( ( a |g b ) = ( u |g v ) <-> <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. ) ) |
| 61 |
45 46
|
opth |
|- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) |
| 62 |
|
vex |
|- a e. _V |
| 63 |
|
vex |
|- b e. _V |
| 64 |
62 63
|
opth |
|- ( <. a , b >. = <. u , v >. <-> ( a = u /\ b = v ) ) |
| 65 |
|
simpl |
|- ( ( a = u /\ b = v ) -> a = u ) |
| 66 |
65
|
equcomd |
|- ( ( a = u /\ b = v ) -> u = a ) |
| 67 |
66
|
eleq1d |
|- ( ( a = u /\ b = v ) -> ( u e. ( Fmla ` (/) ) <-> a e. ( Fmla ` (/) ) ) ) |
| 68 |
|
simpr |
|- ( ( a = u /\ b = v ) -> b = v ) |
| 69 |
68
|
equcomd |
|- ( ( a = u /\ b = v ) -> v = b ) |
| 70 |
69
|
eleq1d |
|- ( ( a = u /\ b = v ) -> ( v e. ( Fmla ` (/) ) <-> b e. ( Fmla ` (/) ) ) ) |
| 71 |
67 70
|
anbi12d |
|- ( ( a = u /\ b = v ) -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 72 |
64 71
|
sylbi |
|- ( <. a , b >. = <. u , v >. -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 73 |
72
|
adantl |
|- ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 74 |
61 73
|
sylbi |
|- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 75 |
|
fmlasssuc |
|- ( (/) e. _om -> ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) ) |
| 76 |
32 75
|
ax-mp |
|- ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) |
| 77 |
76
|
sseli |
|- ( a e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) |
| 78 |
76
|
sseli |
|- ( b e. ( Fmla ` (/) ) -> b e. ( Fmla ` suc (/) ) ) |
| 79 |
77 78
|
anim12i |
|- ( ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 80 |
74 79
|
biimtrdi |
|- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 81 |
80
|
com12 |
|- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 82 |
60 81
|
sylbid |
|- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 83 |
82
|
rexlimdva |
|- ( u e. ( Fmla ` (/) ) -> ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 84 |
|
gonanegoal |
|- ( a |g b ) =/= A.g i u |
| 85 |
|
eqneqall |
|- ( ( a |g b ) = A.g i u -> ( ( a |g b ) =/= A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 86 |
84 85
|
mpi |
|- ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 87 |
86
|
a1i |
|- ( ( u e. ( Fmla ` (/) ) /\ i e. _om ) -> ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 88 |
87
|
rexlimdva |
|- ( u e. ( Fmla ` (/) ) -> ( E. i e. _om ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 89 |
83 88
|
jaod |
|- ( u e. ( Fmla ` (/) ) -> ( ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 90 |
89
|
rexlimiv |
|- ( E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 91 |
57 90
|
jaoi |
|- ( ( ( a |g b ) e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 92 |
35 91
|
sylbi |
|- ( ( a |g b ) e. ( Fmla ` suc (/) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 93 |
|
gonarlem |
|- ( c e. _om -> ( ( ( a |g b ) e. ( Fmla ` suc c ) -> ( a e. ( Fmla ` suc c ) /\ b e. ( Fmla ` suc c ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc c ) -> ( a e. ( Fmla ` suc suc c ) /\ b e. ( Fmla ` suc suc c ) ) ) ) ) |
| 94 |
10 17 24 31 92 93
|
finds |
|- ( x e. _om -> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 95 |
94
|
adantr |
|- ( ( x e. _om /\ N = suc x ) -> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 96 |
|
fveq2 |
|- ( N = suc x -> ( Fmla ` N ) = ( Fmla ` suc x ) ) |
| 97 |
96
|
eleq2d |
|- ( N = suc x -> ( ( a |g b ) e. ( Fmla ` N ) <-> ( a |g b ) e. ( Fmla ` suc x ) ) ) |
| 98 |
96
|
eleq2d |
|- ( N = suc x -> ( a e. ( Fmla ` N ) <-> a e. ( Fmla ` suc x ) ) ) |
| 99 |
96
|
eleq2d |
|- ( N = suc x -> ( b e. ( Fmla ` N ) <-> b e. ( Fmla ` suc x ) ) ) |
| 100 |
98 99
|
anbi12d |
|- ( N = suc x -> ( ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) <-> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 101 |
97 100
|
imbi12d |
|- ( N = suc x -> ( ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) ) |
| 102 |
101
|
adantl |
|- ( ( x e. _om /\ N = suc x ) -> ( ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) ) |
| 103 |
95 102
|
mpbird |
|- ( ( x e. _om /\ N = suc x ) -> ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 104 |
103
|
rexlimiva |
|- ( E. x e. _om N = suc x -> ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 105 |
3 104
|
syl |
|- ( ( N e. _om /\ N =/= (/) ) -> ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 106 |
105
|
impancom |
|- ( ( N e. _om /\ ( a |g b ) e. ( Fmla ` N ) ) -> ( N =/= (/) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 107 |
2 106
|
mpd |
|- ( ( N e. _om /\ ( a |g b ) e. ( Fmla ` N ) ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) |