| Step | Hyp | Ref | Expression | 
						
							| 1 |  | graop.h |  |-  H = <. ( Vtx ` G ) , ( iEdg ` G ) >. | 
						
							| 2 | 1 | fveq2i |  |-  ( Vtx ` H ) = ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) | 
						
							| 3 |  | fvex |  |-  ( Vtx ` G ) e. _V | 
						
							| 4 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 5 | 3 4 | opvtxfvi |  |-  ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` G ) | 
						
							| 6 | 2 5 | eqtr2i |  |-  ( Vtx ` G ) = ( Vtx ` H ) | 
						
							| 7 | 1 | fveq2i |  |-  ( iEdg ` H ) = ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) | 
						
							| 8 | 3 4 | opiedgfvi |  |-  ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` G ) | 
						
							| 9 | 7 8 | eqtr2i |  |-  ( iEdg ` G ) = ( iEdg ` H ) | 
						
							| 10 | 6 9 | pm3.2i |  |-  ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) |