Step |
Hyp |
Ref |
Expression |
1 |
|
graop.h |
|- H = <. ( Vtx ` G ) , ( iEdg ` G ) >. |
2 |
1
|
fveq2i |
|- ( Vtx ` H ) = ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
3 |
|
fvex |
|- ( Vtx ` G ) e. _V |
4 |
|
fvex |
|- ( iEdg ` G ) e. _V |
5 |
3 4
|
opvtxfvi |
|- ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` G ) |
6 |
2 5
|
eqtr2i |
|- ( Vtx ` G ) = ( Vtx ` H ) |
7 |
1
|
fveq2i |
|- ( iEdg ` H ) = ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
8 |
3 4
|
opiedgfvi |
|- ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` G ) |
9 |
7 8
|
eqtr2i |
|- ( iEdg ` G ) = ( iEdg ` H ) |
10 |
6 9
|
pm3.2i |
|- ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) |