Step |
Hyp |
Ref |
Expression |
1 |
|
grastruct.h |
|- H = { <. ( Base ` ndx ) , ( Vtx ` G ) >. , <. ( .ef ` ndx ) , ( iEdg ` G ) >. } |
2 |
|
fvex |
|- ( Vtx ` G ) e. _V |
3 |
|
fvex |
|- ( iEdg ` G ) e. _V |
4 |
1
|
struct2grvtx |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( Vtx ` H ) = ( Vtx ` G ) ) |
5 |
2 3 4
|
mp2an |
|- ( Vtx ` H ) = ( Vtx ` G ) |
6 |
5
|
eqcomi |
|- ( Vtx ` G ) = ( Vtx ` H ) |
7 |
1
|
struct2griedg |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( iEdg ` H ) = ( iEdg ` G ) ) |
8 |
2 3 7
|
mp2an |
|- ( iEdg ` H ) = ( iEdg ` G ) |
9 |
8
|
eqcomi |
|- ( iEdg ` G ) = ( iEdg ` H ) |
10 |
6 9
|
pm3.2i |
|- ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) |