| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grastruct.h |  |-  H = { <. ( Base ` ndx ) , ( Vtx ` G ) >. , <. ( .ef ` ndx ) , ( iEdg ` G ) >. } | 
						
							| 2 |  | fvex |  |-  ( Vtx ` G ) e. _V | 
						
							| 3 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 4 | 1 | struct2grvtx |  |-  ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( Vtx ` H ) = ( Vtx ` G ) ) | 
						
							| 5 | 2 3 4 | mp2an |  |-  ( Vtx ` H ) = ( Vtx ` G ) | 
						
							| 6 | 5 | eqcomi |  |-  ( Vtx ` G ) = ( Vtx ` H ) | 
						
							| 7 | 1 | struct2griedg |  |-  ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( iEdg ` H ) = ( iEdg ` G ) ) | 
						
							| 8 | 2 3 7 | mp2an |  |-  ( iEdg ` H ) = ( iEdg ` G ) | 
						
							| 9 | 8 | eqcomi |  |-  ( iEdg ` G ) = ( iEdg ` H ) | 
						
							| 10 | 6 9 | pm3.2i |  |-  ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) |