Step |
Hyp |
Ref |
Expression |
1 |
|
griedg0prc.u |
|- U = { <. v , e >. | e : (/) --> (/) } |
2 |
1
|
eleq2i |
|- ( g e. U <-> g e. { <. v , e >. | e : (/) --> (/) } ) |
3 |
|
elopab |
|- ( g e. { <. v , e >. | e : (/) --> (/) } <-> E. v E. e ( g = <. v , e >. /\ e : (/) --> (/) ) ) |
4 |
2 3
|
bitri |
|- ( g e. U <-> E. v E. e ( g = <. v , e >. /\ e : (/) --> (/) ) ) |
5 |
|
opex |
|- <. v , e >. e. _V |
6 |
5
|
a1i |
|- ( e : (/) --> (/) -> <. v , e >. e. _V ) |
7 |
|
vex |
|- v e. _V |
8 |
|
vex |
|- e e. _V |
9 |
7 8
|
opiedgfvi |
|- ( iEdg ` <. v , e >. ) = e |
10 |
|
f0bi |
|- ( e : (/) --> (/) <-> e = (/) ) |
11 |
10
|
biimpi |
|- ( e : (/) --> (/) -> e = (/) ) |
12 |
9 11
|
syl5eq |
|- ( e : (/) --> (/) -> ( iEdg ` <. v , e >. ) = (/) ) |
13 |
6 12
|
usgr0e |
|- ( e : (/) --> (/) -> <. v , e >. e. USGraph ) |
14 |
13
|
adantl |
|- ( ( g = <. v , e >. /\ e : (/) --> (/) ) -> <. v , e >. e. USGraph ) |
15 |
|
eleq1 |
|- ( g = <. v , e >. -> ( g e. USGraph <-> <. v , e >. e. USGraph ) ) |
16 |
15
|
adantr |
|- ( ( g = <. v , e >. /\ e : (/) --> (/) ) -> ( g e. USGraph <-> <. v , e >. e. USGraph ) ) |
17 |
14 16
|
mpbird |
|- ( ( g = <. v , e >. /\ e : (/) --> (/) ) -> g e. USGraph ) |
18 |
17
|
exlimivv |
|- ( E. v E. e ( g = <. v , e >. /\ e : (/) --> (/) ) -> g e. USGraph ) |
19 |
4 18
|
sylbi |
|- ( g e. U -> g e. USGraph ) |
20 |
19
|
ssriv |
|- U C_ USGraph |