Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
dfgrlic2.w | |- W = ( Vtx ` H ) |
||
Assertion | grilcbri | |- ( G ~=lgr H -> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
2 | dfgrlic2.w | |- W = ( Vtx ` H ) |
|
3 | grlicrcl | |- ( G ~=lgr H -> ( G e. _V /\ H e. _V ) ) |
|
4 | 1 2 | dfgrlic2 | |- ( ( G e. _V /\ H e. _V ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
5 | 3 4 | syl | |- ( G ~=lgr H -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
6 | 5 | ibi | |- ( G ~=lgr H -> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) |