Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gropeld.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) ) |
|
| gropeld.v | |- ( ph -> V e. U ) |
||
| gropeld.e | |- ( ph -> E e. W ) |
||
| Assertion | gropeld | |- ( ph -> <. V , E >. e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropeld.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) ) |
|
| 2 | gropeld.v | |- ( ph -> V e. U ) |
|
| 3 | gropeld.e | |- ( ph -> E e. W ) |
|
| 4 | 1 2 3 | gropd | |- ( ph -> [. <. V , E >. / g ]. g e. C ) |
| 5 | sbcel1v | |- ( [. <. V , E >. / g ]. g e. C <-> <. V , E >. e. C ) |
|
| 6 | 4 5 | sylib | |- ( ph -> <. V , E >. e. C ) |