Metamath Proof Explorer


Theorem gropeld

Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 11-Oct-2020)

Ref Expression
Hypotheses gropeld.g
|- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) )
gropeld.v
|- ( ph -> V e. U )
gropeld.e
|- ( ph -> E e. W )
Assertion gropeld
|- ( ph -> <. V , E >. e. C )

Proof

Step Hyp Ref Expression
1 gropeld.g
 |-  ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) )
2 gropeld.v
 |-  ( ph -> V e. U )
3 gropeld.e
 |-  ( ph -> E e. W )
4 1 2 3 gropd
 |-  ( ph -> [. <. V , E >. / g ]. g e. C )
5 sbcel1v
 |-  ( [. <. V , E >. / g ]. g e. C <-> <. V , E >. e. C )
6 4 5 sylib
 |-  ( ph -> <. V , E >. e. C )