| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grp1.m |  |-  M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } | 
						
							| 2 | 1 | grp1 |  |-  ( I e. V -> M e. Grp ) | 
						
							| 3 |  | snex |  |-  { I } e. _V | 
						
							| 4 | 1 | grpbase |  |-  ( { I } e. _V -> { I } = ( Base ` M ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  { I } = ( Base ` M ) | 
						
							| 6 |  | eqid |  |-  ( invg ` M ) = ( invg ` M ) | 
						
							| 7 | 5 6 | grpinvf |  |-  ( M e. Grp -> ( invg ` M ) : { I } --> { I } ) | 
						
							| 8 | 2 7 | syl |  |-  ( I e. V -> ( invg ` M ) : { I } --> { I } ) | 
						
							| 9 |  | fsng |  |-  ( ( I e. V /\ I e. V ) -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) | 
						
							| 10 | 9 | anidms |  |-  ( I e. V -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) | 
						
							| 11 |  | simpr |  |-  ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = { <. I , I >. } ) | 
						
							| 12 |  | restidsing |  |-  ( _I |` { I } ) = ( { I } X. { I } ) | 
						
							| 13 |  | xpsng |  |-  ( ( I e. V /\ I e. V ) -> ( { I } X. { I } ) = { <. I , I >. } ) | 
						
							| 14 | 13 | anidms |  |-  ( I e. V -> ( { I } X. { I } ) = { <. I , I >. } ) | 
						
							| 15 | 12 14 | eqtr2id |  |-  ( I e. V -> { <. I , I >. } = ( _I |` { I } ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> { <. I , I >. } = ( _I |` { I } ) ) | 
						
							| 17 | 11 16 | eqtrd |  |-  ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = ( _I |` { I } ) ) | 
						
							| 18 | 17 | ex |  |-  ( I e. V -> ( ( invg ` M ) = { <. I , I >. } -> ( invg ` M ) = ( _I |` { I } ) ) ) | 
						
							| 19 | 10 18 | sylbid |  |-  ( I e. V -> ( ( invg ` M ) : { I } --> { I } -> ( invg ` M ) = ( _I |` { I } ) ) ) | 
						
							| 20 | 8 19 | mpd |  |-  ( I e. V -> ( invg ` M ) = ( _I |` { I } ) ) |