Metamath Proof Explorer


Theorem grpasscan2d

Description: An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpasscan2d.b
|- B = ( Base ` G )
grpasscan2d.p
|- .+ = ( +g ` G )
grpasscan2d.n
|- N = ( invg ` G )
grpasscan2d.g
|- ( ph -> G e. Grp )
grpasscan2d.1
|- ( ph -> X e. B )
grpasscan2d.2
|- ( ph -> Y e. B )
Assertion grpasscan2d
|- ( ph -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X )

Proof

Step Hyp Ref Expression
1 grpasscan2d.b
 |-  B = ( Base ` G )
2 grpasscan2d.p
 |-  .+ = ( +g ` G )
3 grpasscan2d.n
 |-  N = ( invg ` G )
4 grpasscan2d.g
 |-  ( ph -> G e. Grp )
5 grpasscan2d.1
 |-  ( ph -> X e. B )
6 grpasscan2d.2
 |-  ( ph -> Y e. B )
7 1 2 3 grpasscan2
 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X )
8 4 5 6 7 syl3anc
 |-  ( ph -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X )