Description: A group operation is associative. (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpassd.b | |- B = ( Base ` G ) |
|
| grpassd.p | |- .+ = ( +g ` G ) |
||
| grpassd.g | |- ( ph -> G e. Grp ) |
||
| grpassd.1 | |- ( ph -> X e. B ) |
||
| grpassd.2 | |- ( ph -> Y e. B ) |
||
| grpassd.3 | |- ( ph -> Z e. B ) |
||
| Assertion | grpassd | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpassd.b | |- B = ( Base ` G ) |
|
| 2 | grpassd.p | |- .+ = ( +g ` G ) |
|
| 3 | grpassd.g | |- ( ph -> G e. Grp ) |
|
| 4 | grpassd.1 | |- ( ph -> X e. B ) |
|
| 5 | grpassd.2 | |- ( ph -> Y e. B ) |
|
| 6 | grpassd.3 | |- ( ph -> Z e. B ) |
|
| 7 | 1 2 | grpass | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |