Metamath Proof Explorer


Theorem grpassd

Description: A group operation is associative. (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpassd.b
|- B = ( Base ` G )
grpassd.p
|- .+ = ( +g ` G )
grpassd.g
|- ( ph -> G e. Grp )
grpassd.1
|- ( ph -> X e. B )
grpassd.2
|- ( ph -> Y e. B )
grpassd.3
|- ( ph -> Z e. B )
Assertion grpassd
|- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )

Proof

Step Hyp Ref Expression
1 grpassd.b
 |-  B = ( Base ` G )
2 grpassd.p
 |-  .+ = ( +g ` G )
3 grpassd.g
 |-  ( ph -> G e. Grp )
4 grpassd.1
 |-  ( ph -> X e. B )
5 grpassd.2
 |-  ( ph -> Y e. B )
6 grpassd.3
 |-  ( ph -> Z e. B )
7 1 2 grpass
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )
8 3 4 5 6 7 syl13anc
 |-  ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )