Description: A group operation is associative. (Contributed by SN, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpassd.b | |- B = ( Base ` G ) |
|
grpassd.p | |- .+ = ( +g ` G ) |
||
grpassd.g | |- ( ph -> G e. Grp ) |
||
grpassd.1 | |- ( ph -> X e. B ) |
||
grpassd.2 | |- ( ph -> Y e. B ) |
||
grpassd.3 | |- ( ph -> Z e. B ) |
||
Assertion | grpassd | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpassd.b | |- B = ( Base ` G ) |
|
2 | grpassd.p | |- .+ = ( +g ` G ) |
|
3 | grpassd.g | |- ( ph -> G e. Grp ) |
|
4 | grpassd.1 | |- ( ph -> X e. B ) |
|
5 | grpassd.2 | |- ( ph -> Y e. B ) |
|
6 | grpassd.3 | |- ( ph -> Z e. B ) |
|
7 | 1 2 | grpass | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
8 | 3 4 5 6 7 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |