| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpstrx.b |
|- B e. _V |
| 2 |
|
grpstrx.p |
|- .+ e. _V |
| 3 |
|
grpstrx.g |
|- G = { <. 1 , B >. , <. 2 , .+ >. } |
| 4 |
|
basendx |
|- ( Base ` ndx ) = 1 |
| 5 |
4
|
opeq1i |
|- <. ( Base ` ndx ) , B >. = <. 1 , B >. |
| 6 |
|
plusgndx |
|- ( +g ` ndx ) = 2 |
| 7 |
6
|
opeq1i |
|- <. ( +g ` ndx ) , .+ >. = <. 2 , .+ >. |
| 8 |
5 7
|
preq12i |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } = { <. 1 , B >. , <. 2 , .+ >. } |
| 9 |
3 8
|
eqtr4i |
|- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
| 10 |
9
|
grpbase |
|- ( B e. _V -> B = ( Base ` G ) ) |
| 11 |
1 10
|
ax-mp |
|- B = ( Base ` G ) |