Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpbn0.b | |- B = ( Base ` G ) |
|
| Assertion | grpbn0 | |- ( G e. Grp -> B =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | |- B = ( Base ` G ) |
|
| 2 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 3 | 1 2 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 4 | 3 | ne0d | |- ( G e. Grp -> B =/= (/) ) |