Metamath Proof Explorer


Theorem grpcl

Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011)

Ref Expression
Hypotheses grpcl.b
|- B = ( Base ` G )
grpcl.p
|- .+ = ( +g ` G )
Assertion grpcl
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )

Proof

Step Hyp Ref Expression
1 grpcl.b
 |-  B = ( Base ` G )
2 grpcl.p
 |-  .+ = ( +g ` G )
3 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
4 1 2 mndcl
 |-  ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )
5 3 4 syl3an1
 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )