Metamath Proof Explorer


Theorem grpcld

Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses grpcld.b
|- B = ( Base ` G )
grpcld.p
|- .+ = ( +g ` G )
grpcld.r
|- ( ph -> G e. Grp )
grpcld.x
|- ( ph -> X e. B )
grpcld.y
|- ( ph -> Y e. B )
Assertion grpcld
|- ( ph -> ( X .+ Y ) e. B )

Proof

Step Hyp Ref Expression
1 grpcld.b
 |-  B = ( Base ` G )
2 grpcld.p
 |-  .+ = ( +g ` G )
3 grpcld.r
 |-  ( ph -> G e. Grp )
4 grpcld.x
 |-  ( ph -> X e. B )
5 grpcld.y
 |-  ( ph -> Y e. B )
6 1 2 grpcl
 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )
7 3 4 5 6 syl3anc
 |-  ( ph -> ( X .+ Y ) e. B )