Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpcld.b | |- B = ( Base ` G ) |
|
| grpcld.p | |- .+ = ( +g ` G ) |
||
| grpcld.r | |- ( ph -> G e. Grp ) |
||
| grpcld.x | |- ( ph -> X e. B ) |
||
| grpcld.y | |- ( ph -> Y e. B ) |
||
| Assertion | grpcld | |- ( ph -> ( X .+ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcld.b | |- B = ( Base ` G ) |
|
| 2 | grpcld.p | |- .+ = ( +g ` G ) |
|
| 3 | grpcld.r | |- ( ph -> G e. Grp ) |
|
| 4 | grpcld.x | |- ( ph -> X e. B ) |
|
| 5 | grpcld.y | |- ( ph -> Y e. B ) |
|
| 6 | 1 2 | grpcl | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ph -> ( X .+ Y ) e. B ) |