Metamath Proof Explorer


Theorem grpcominv2

Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025)

Ref Expression
Hypotheses grpcominv.b
|- B = ( Base ` G )
grpcominv.p
|- .+ = ( +g ` G )
grpcominv.n
|- N = ( invg ` G )
grpcominv.g
|- ( ph -> G e. Grp )
grpcominv.x
|- ( ph -> X e. B )
grpcominv.y
|- ( ph -> Y e. B )
grpcominv.1
|- ( ph -> ( X .+ Y ) = ( Y .+ X ) )
Assertion grpcominv2
|- ( ph -> ( Y .+ ( N ` X ) ) = ( ( N ` X ) .+ Y ) )

Proof

Step Hyp Ref Expression
1 grpcominv.b
 |-  B = ( Base ` G )
2 grpcominv.p
 |-  .+ = ( +g ` G )
3 grpcominv.n
 |-  N = ( invg ` G )
4 grpcominv.g
 |-  ( ph -> G e. Grp )
5 grpcominv.x
 |-  ( ph -> X e. B )
6 grpcominv.y
 |-  ( ph -> Y e. B )
7 grpcominv.1
 |-  ( ph -> ( X .+ Y ) = ( Y .+ X ) )
8 7 eqcomd
 |-  ( ph -> ( Y .+ X ) = ( X .+ Y ) )
9 1 2 3 4 6 5 8 grpcominv1
 |-  ( ph -> ( Y .+ ( N ` X ) ) = ( ( N ` X ) .+ Y ) )