Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpcominv.b | |- B = ( Base ` G ) |
|
grpcominv.p | |- .+ = ( +g ` G ) |
||
grpcominv.n | |- N = ( invg ` G ) |
||
grpcominv.g | |- ( ph -> G e. Grp ) |
||
grpcominv.x | |- ( ph -> X e. B ) |
||
grpcominv.y | |- ( ph -> Y e. B ) |
||
grpcominv.1 | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
||
Assertion | grpcominv2 | |- ( ph -> ( Y .+ ( N ` X ) ) = ( ( N ` X ) .+ Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcominv.b | |- B = ( Base ` G ) |
|
2 | grpcominv.p | |- .+ = ( +g ` G ) |
|
3 | grpcominv.n | |- N = ( invg ` G ) |
|
4 | grpcominv.g | |- ( ph -> G e. Grp ) |
|
5 | grpcominv.x | |- ( ph -> X e. B ) |
|
6 | grpcominv.y | |- ( ph -> Y e. B ) |
|
7 | grpcominv.1 | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
|
8 | 7 | eqcomd | |- ( ph -> ( Y .+ X ) = ( X .+ Y ) ) |
9 | 1 2 3 4 6 5 8 | grpcominv1 | |- ( ph -> ( Y .+ ( N ` X ) ) = ( ( N ` X ) .+ Y ) ) |