Metamath Proof Explorer


Theorem grpideu

Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses grpcl.b
|- B = ( Base ` G )
grpcl.p
|- .+ = ( +g ` G )
grpinvex.p
|- .0. = ( 0g ` G )
Assertion grpideu
|- ( G e. Grp -> E! u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )

Proof

Step Hyp Ref Expression
1 grpcl.b
 |-  B = ( Base ` G )
2 grpcl.p
 |-  .+ = ( +g ` G )
3 grpinvex.p
 |-  .0. = ( 0g ` G )
4 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
5 1 2 mndideu
 |-  ( G e. Mnd -> E! u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )
6 4 5 syl
 |-  ( G e. Grp -> E! u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )