| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplrinv.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grplrinv.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | grplrinv.i |  |-  .0. = ( 0g ` G ) | 
						
							| 4 | 1 2 3 | grplid |  |-  ( ( G e. Grp /\ A e. B ) -> ( .0. .+ A ) = A ) | 
						
							| 5 | 1 2 3 | grprid |  |-  ( ( G e. Grp /\ A e. B ) -> ( A .+ .0. ) = A ) | 
						
							| 6 | 1 2 3 | grplrinv |  |-  ( G e. Grp -> A. z e. B E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) ) | 
						
							| 7 |  | oveq2 |  |-  ( z = A -> ( y .+ z ) = ( y .+ A ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( z = A -> ( ( y .+ z ) = .0. <-> ( y .+ A ) = .0. ) ) | 
						
							| 9 |  | oveq1 |  |-  ( z = A -> ( z .+ y ) = ( A .+ y ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( z = A -> ( ( z .+ y ) = .0. <-> ( A .+ y ) = .0. ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( z = A -> ( ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) <-> ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( z = A -> ( E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) <-> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) | 
						
							| 13 | 12 | rspcv |  |-  ( A e. B -> ( A. z e. B E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) -> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) | 
						
							| 14 | 6 13 | mpan9 |  |-  ( ( G e. Grp /\ A e. B ) -> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) | 
						
							| 15 | 4 5 14 | jca31 |  |-  ( ( G e. Grp /\ A e. B ) -> ( ( ( .0. .+ A ) = A /\ ( A .+ .0. ) = A ) /\ E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |