| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpidrcan.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grpidrcan.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | grpidrcan.o |  |-  .0. = ( 0g ` G ) | 
						
							| 4 | 1 2 3 | grplid |  |-  ( ( G e. Grp /\ X e. B ) -> ( .0. .+ X ) = X ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( .0. .+ X ) = X ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( Z .+ X ) = ( .0. .+ X ) <-> ( Z .+ X ) = X ) ) | 
						
							| 7 |  | simp1 |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> G e. Grp ) | 
						
							| 8 |  | simp3 |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> Z e. B ) | 
						
							| 9 | 1 3 | grpidcl |  |-  ( G e. Grp -> .0. e. B ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> .0. e. B ) | 
						
							| 11 |  | simp2 |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> X e. B ) | 
						
							| 12 | 1 2 | grprcan |  |-  ( ( G e. Grp /\ ( Z e. B /\ .0. e. B /\ X e. B ) ) -> ( ( Z .+ X ) = ( .0. .+ X ) <-> Z = .0. ) ) | 
						
							| 13 | 7 8 10 11 12 | syl13anc |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( Z .+ X ) = ( .0. .+ X ) <-> Z = .0. ) ) | 
						
							| 14 | 6 13 | bitr3d |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( Z .+ X ) = X <-> Z = .0. ) ) |