Step |
Hyp |
Ref |
Expression |
1 |
|
grpidrcan.b |
|- B = ( Base ` G ) |
2 |
|
grpidrcan.p |
|- .+ = ( +g ` G ) |
3 |
|
grpidrcan.o |
|- .0. = ( 0g ` G ) |
4 |
1 2 3
|
grprid |
|- ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X ) |
5 |
4
|
3adant3 |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( X .+ .0. ) = X ) |
6 |
5
|
eqeq2d |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( X .+ Z ) = ( X .+ .0. ) <-> ( X .+ Z ) = X ) ) |
7 |
|
simp1 |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> G e. Grp ) |
8 |
|
simp3 |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> Z e. B ) |
9 |
1 3
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
10 |
9
|
3ad2ant1 |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> .0. e. B ) |
11 |
|
simp2 |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> X e. B ) |
12 |
1 2
|
grplcan |
|- ( ( G e. Grp /\ ( Z e. B /\ .0. e. B /\ X e. B ) ) -> ( ( X .+ Z ) = ( X .+ .0. ) <-> Z = .0. ) ) |
13 |
7 8 10 11 12
|
syl13anc |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( X .+ Z ) = ( X .+ .0. ) <-> Z = .0. ) ) |
14 |
6 13
|
bitr3d |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( X .+ Z ) = X <-> Z = .0. ) ) |