Metamath Proof Explorer


Theorem grpidrcan

Description: If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019)

Ref Expression
Hypotheses grpidrcan.b
|- B = ( Base ` G )
grpidrcan.p
|- .+ = ( +g ` G )
grpidrcan.o
|- .0. = ( 0g ` G )
Assertion grpidrcan
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( X .+ Z ) = X <-> Z = .0. ) )

Proof

Step Hyp Ref Expression
1 grpidrcan.b
 |-  B = ( Base ` G )
2 grpidrcan.p
 |-  .+ = ( +g ` G )
3 grpidrcan.o
 |-  .0. = ( 0g ` G )
4 1 2 3 grprid
 |-  ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X )
5 4 3adant3
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( X .+ .0. ) = X )
6 5 eqeq2d
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( X .+ Z ) = ( X .+ .0. ) <-> ( X .+ Z ) = X ) )
7 simp1
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> G e. Grp )
8 simp3
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> Z e. B )
9 1 3 grpidcl
 |-  ( G e. Grp -> .0. e. B )
10 9 3ad2ant1
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> .0. e. B )
11 simp2
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> X e. B )
12 1 2 grplcan
 |-  ( ( G e. Grp /\ ( Z e. B /\ .0. e. B /\ X e. B ) ) -> ( ( X .+ Z ) = ( X .+ .0. ) <-> Z = .0. ) )
13 7 8 10 11 12 syl13anc
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( X .+ Z ) = ( X .+ .0. ) <-> Z = .0. ) )
14 6 13 bitr3d
 |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( X .+ Z ) = X <-> Z = .0. ) )