| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpinvinv.b | 
							 |-  B = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							grpinvinv.n | 
							 |-  N = ( invg ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinv11.g | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 4 | 
							
								
							 | 
							grpinv11.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 5 | 
							
								
							 | 
							grpinv11.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( ( N ` X ) = ( N ` Y ) -> ( N ` ( N ` X ) ) = ( N ` ( N ` Y ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( ph /\ ( N ` X ) = ( N ` Y ) ) -> ( N ` ( N ` X ) ) = ( N ` ( N ` Y ) ) )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							grpinvinv | 
							 |-  ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 9 | 
							
								3 4 8
							 | 
							syl2anc | 
							 |-  ( ph -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ ( N ` X ) = ( N ` Y ) ) -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							grpinvinv | 
							 |-  ( ( G e. Grp /\ Y e. B ) -> ( N ` ( N ` Y ) ) = Y )  | 
						
						
							| 12 | 
							
								3 5 11
							 | 
							syl2anc | 
							 |-  ( ph -> ( N ` ( N ` Y ) ) = Y )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ph /\ ( N ` X ) = ( N ` Y ) ) -> ( N ` ( N ` Y ) ) = Y )  | 
						
						
							| 14 | 
							
								7 10 13
							 | 
							3eqtr3d | 
							 |-  ( ( ph /\ ( N ` X ) = ( N ` Y ) ) -> X = Y )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							 |-  ( ph -> ( ( N ` X ) = ( N ` Y ) -> X = Y ) )  | 
						
						
							| 16 | 
							
								
							 | 
							fveq2 | 
							 |-  ( X = Y -> ( N ` X ) = ( N ` Y ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							impbid1 | 
							 |-  ( ph -> ( ( N ` X ) = ( N ` Y ) <-> X = Y ) )  |