Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcl.b | |- B = ( Base ` G ) |
|
| grpinvcl.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | |- B = ( Base ` G ) |
|
| 2 | grpinvcl.n | |- N = ( invg ` G ) |
|
| 3 | 1 2 | grpinvf | |- ( G e. Grp -> N : B --> B ) |
| 4 | 3 | ffvelcdmda | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |