Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvcld.b | |- B = ( Base ` G ) |
|
grpinvcld.n | |- N = ( invg ` G ) |
||
grpinvcld.g | |- ( ph -> G e. Grp ) |
||
grpinvcld.1 | |- ( ph -> X e. B ) |
||
Assertion | grpinvcld | |- ( ph -> ( N ` X ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcld.b | |- B = ( Base ` G ) |
|
2 | grpinvcld.n | |- N = ( invg ` G ) |
|
3 | grpinvcld.g | |- ( ph -> G e. Grp ) |
|
4 | grpinvcld.1 | |- ( ph -> X e. B ) |
|
5 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
6 | 3 4 5 | syl2anc | |- ( ph -> ( N ` X ) e. B ) |