| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvinv.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinvinv.n |
|- N = ( invg ` G ) |
| 3 |
|
eqid |
|- ( x e. B |-> ( N ` x ) ) = ( x e. B |-> ( N ` x ) ) |
| 4 |
1 2
|
grpinvcl |
|- ( ( G e. Grp /\ x e. B ) -> ( N ` x ) e. B ) |
| 5 |
1 2
|
grpinvcl |
|- ( ( G e. Grp /\ y e. B ) -> ( N ` y ) e. B ) |
| 6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 7 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 8 |
1 6 7 2
|
grpinvid1 |
|- ( ( G e. Grp /\ y e. B /\ x e. B ) -> ( ( N ` y ) = x <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 9 |
8
|
3com23 |
|- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( N ` y ) = x <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 10 |
1 6 7 2
|
grpinvid2 |
|- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( N ` x ) = y <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 11 |
9 10
|
bitr4d |
|- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( N ` y ) = x <-> ( N ` x ) = y ) ) |
| 12 |
11
|
3expb |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( N ` y ) = x <-> ( N ` x ) = y ) ) |
| 13 |
|
eqcom |
|- ( x = ( N ` y ) <-> ( N ` y ) = x ) |
| 14 |
|
eqcom |
|- ( y = ( N ` x ) <-> ( N ` x ) = y ) |
| 15 |
12 13 14
|
3bitr4g |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( x = ( N ` y ) <-> y = ( N ` x ) ) ) |
| 16 |
3 4 5 15
|
f1ocnv2d |
|- ( G e. Grp -> ( ( x e. B |-> ( N ` x ) ) : B -1-1-onto-> B /\ `' ( x e. B |-> ( N ` x ) ) = ( y e. B |-> ( N ` y ) ) ) ) |
| 17 |
16
|
simprd |
|- ( G e. Grp -> `' ( x e. B |-> ( N ` x ) ) = ( y e. B |-> ( N ` y ) ) ) |
| 18 |
1 2
|
grpinvf |
|- ( G e. Grp -> N : B --> B ) |
| 19 |
18
|
feqmptd |
|- ( G e. Grp -> N = ( x e. B |-> ( N ` x ) ) ) |
| 20 |
19
|
cnveqd |
|- ( G e. Grp -> `' N = `' ( x e. B |-> ( N ` x ) ) ) |
| 21 |
18
|
feqmptd |
|- ( G e. Grp -> N = ( y e. B |-> ( N ` y ) ) ) |
| 22 |
17 20 21
|
3eqtr4d |
|- ( G e. Grp -> `' N = N ) |