Step |
Hyp |
Ref |
Expression |
1 |
|
grpinveu.b |
|- B = ( Base ` G ) |
2 |
|
grpinveu.p |
|- .+ = ( +g ` G ) |
3 |
|
grpinveu.o |
|- .0. = ( 0g ` G ) |
4 |
1 2 3
|
grpinvex |
|- ( ( G e. Grp /\ X e. B ) -> E. y e. B ( y .+ X ) = .0. ) |
5 |
|
eqtr3 |
|- ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> ( y .+ X ) = ( z .+ X ) ) |
6 |
1 2
|
grprcan |
|- ( ( G e. Grp /\ ( y e. B /\ z e. B /\ X e. B ) ) -> ( ( y .+ X ) = ( z .+ X ) <-> y = z ) ) |
7 |
5 6
|
syl5ib |
|- ( ( G e. Grp /\ ( y e. B /\ z e. B /\ X e. B ) ) -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) |
8 |
7
|
3exp2 |
|- ( G e. Grp -> ( y e. B -> ( z e. B -> ( X e. B -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) ) ) ) |
9 |
8
|
com24 |
|- ( G e. Grp -> ( X e. B -> ( z e. B -> ( y e. B -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) ) ) ) |
10 |
9
|
imp41 |
|- ( ( ( ( G e. Grp /\ X e. B ) /\ z e. B ) /\ y e. B ) -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) |
11 |
10
|
an32s |
|- ( ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) /\ z e. B ) -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) |
12 |
11
|
expd |
|- ( ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) /\ z e. B ) -> ( ( y .+ X ) = .0. -> ( ( z .+ X ) = .0. -> y = z ) ) ) |
13 |
12
|
ralrimdva |
|- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> ( ( y .+ X ) = .0. -> A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) |
14 |
13
|
ancld |
|- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> ( ( y .+ X ) = .0. -> ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) ) |
15 |
14
|
reximdva |
|- ( ( G e. Grp /\ X e. B ) -> ( E. y e. B ( y .+ X ) = .0. -> E. y e. B ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) ) |
16 |
4 15
|
mpd |
|- ( ( G e. Grp /\ X e. B ) -> E. y e. B ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) |
17 |
|
oveq1 |
|- ( y = z -> ( y .+ X ) = ( z .+ X ) ) |
18 |
17
|
eqeq1d |
|- ( y = z -> ( ( y .+ X ) = .0. <-> ( z .+ X ) = .0. ) ) |
19 |
18
|
reu8 |
|- ( E! y e. B ( y .+ X ) = .0. <-> E. y e. B ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) |
20 |
16 19
|
sylibr |
|- ( ( G e. Grp /\ X e. B ) -> E! y e. B ( y .+ X ) = .0. ) |