Step |
Hyp |
Ref |
Expression |
1 |
|
grpcl.b |
|- B = ( Base ` G ) |
2 |
|
grpcl.p |
|- .+ = ( +g ` G ) |
3 |
|
grpinvex.p |
|- .0. = ( 0g ` G ) |
4 |
1 2 3
|
isgrp |
|- ( G e. Grp <-> ( G e. Mnd /\ A. x e. B E. y e. B ( y .+ x ) = .0. ) ) |
5 |
4
|
simprbi |
|- ( G e. Grp -> A. x e. B E. y e. B ( y .+ x ) = .0. ) |
6 |
|
oveq2 |
|- ( x = X -> ( y .+ x ) = ( y .+ X ) ) |
7 |
6
|
eqeq1d |
|- ( x = X -> ( ( y .+ x ) = .0. <-> ( y .+ X ) = .0. ) ) |
8 |
7
|
rexbidv |
|- ( x = X -> ( E. y e. B ( y .+ x ) = .0. <-> E. y e. B ( y .+ X ) = .0. ) ) |
9 |
8
|
rspccva |
|- ( ( A. x e. B E. y e. B ( y .+ x ) = .0. /\ X e. B ) -> E. y e. B ( y .+ X ) = .0. ) |
10 |
5 9
|
sylan |
|- ( ( G e. Grp /\ X e. B ) -> E. y e. B ( y .+ X ) = .0. ) |