Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvcl.b |
|- B = ( Base ` G ) |
2 |
|
grpinvcl.n |
|- N = ( invg ` G ) |
3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
5 |
1 3 4
|
grpinveu |
|- ( ( G e. Grp /\ x e. B ) -> E! y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) |
6 |
|
riotacl |
|- ( E! y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) -> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) e. B ) |
7 |
5 6
|
syl |
|- ( ( G e. Grp /\ x e. B ) -> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) e. B ) |
8 |
1 3 4 2
|
grpinvfval |
|- N = ( x e. B |-> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
9 |
7 8
|
fmptd |
|- ( G e. Grp -> N : B --> B ) |