Metamath Proof Explorer


Theorem grpinvfn

Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses grpinvfn.b
|- B = ( Base ` G )
grpinvfn.n
|- N = ( invg ` G )
Assertion grpinvfn
|- N Fn B

Proof

Step Hyp Ref Expression
1 grpinvfn.b
 |-  B = ( Base ` G )
2 grpinvfn.n
 |-  N = ( invg ` G )
3 riotaex
 |-  ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) e. _V
4 eqid
 |-  ( +g ` G ) = ( +g ` G )
5 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
6 1 4 5 2 grpinvfval
 |-  N = ( x e. B |-> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) )
7 3 6 fnmpti
 |-  N Fn B