Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvfn.b | |- B = ( Base ` G ) |
|
grpinvfn.n | |- N = ( invg ` G ) |
||
Assertion | grpinvfn | |- N Fn B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfn.b | |- B = ( Base ` G ) |
|
2 | grpinvfn.n | |- N = ( invg ` G ) |
|
3 | riotaex | |- ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) e. _V |
|
4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
6 | 1 4 5 2 | grpinvfval | |- N = ( x e. B |-> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
7 | 3 6 | fnmpti | |- N Fn B |