| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinvval.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grpinvval.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | grpinvval.o |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | grpinvval.n |  |-  N = ( invg ` G ) | 
						
							| 5 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = B ) | 
						
							| 7 |  | fveq2 |  |-  ( g = G -> ( +g ` g ) = ( +g ` G ) ) | 
						
							| 8 | 7 2 | eqtr4di |  |-  ( g = G -> ( +g ` g ) = .+ ) | 
						
							| 9 | 8 | oveqd |  |-  ( g = G -> ( y ( +g ` g ) x ) = ( y .+ x ) ) | 
						
							| 10 |  | fveq2 |  |-  ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) | 
						
							| 11 | 10 3 | eqtr4di |  |-  ( g = G -> ( 0g ` g ) = .0. ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( g = G -> ( ( y ( +g ` g ) x ) = ( 0g ` g ) <-> ( y .+ x ) = .0. ) ) | 
						
							| 13 | 6 12 | riotaeqbidv |  |-  ( g = G -> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) = ( iota_ y e. B ( y .+ x ) = .0. ) ) | 
						
							| 14 | 6 13 | mpteq12dv |  |-  ( g = G -> ( x e. ( Base ` g ) |-> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) | 
						
							| 15 |  | df-minusg |  |-  invg = ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) ) ) | 
						
							| 16 | 14 15 1 | mptfvmpt |  |-  ( G e. _V -> ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) | 
						
							| 17 |  | fvprc |  |-  ( -. G e. _V -> ( invg ` G ) = (/) ) | 
						
							| 18 |  | mpt0 |  |-  ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) = (/) | 
						
							| 19 | 17 18 | eqtr4di |  |-  ( -. G e. _V -> ( invg ` G ) = ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) | 
						
							| 20 |  | fvprc |  |-  ( -. G e. _V -> ( Base ` G ) = (/) ) | 
						
							| 21 | 1 20 | eqtrid |  |-  ( -. G e. _V -> B = (/) ) | 
						
							| 22 | 21 | mpteq1d |  |-  ( -. G e. _V -> ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) = ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) | 
						
							| 23 | 19 22 | eqtr4d |  |-  ( -. G e. _V -> ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) | 
						
							| 24 | 16 23 | pm2.61i |  |-  ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) | 
						
							| 25 | 4 24 | eqtri |  |-  N = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |