Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvfvi.t |
|- N = ( invg ` G ) |
2 |
|
fvi |
|- ( G e. _V -> ( _I ` G ) = G ) |
3 |
2
|
fveq2d |
|- ( G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` G ) ) |
4 |
|
base0 |
|- (/) = ( Base ` (/) ) |
5 |
|
eqid |
|- ( invg ` (/) ) = ( invg ` (/) ) |
6 |
4 5
|
grpinvfn |
|- ( invg ` (/) ) Fn (/) |
7 |
|
fn0 |
|- ( ( invg ` (/) ) Fn (/) <-> ( invg ` (/) ) = (/) ) |
8 |
6 7
|
mpbi |
|- ( invg ` (/) ) = (/) |
9 |
|
fvprc |
|- ( -. G e. _V -> ( _I ` G ) = (/) ) |
10 |
9
|
fveq2d |
|- ( -. G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` (/) ) ) |
11 |
|
fvprc |
|- ( -. G e. _V -> ( invg ` G ) = (/) ) |
12 |
8 10 11
|
3eqtr4a |
|- ( -. G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` G ) ) |
13 |
3 12
|
pm2.61i |
|- ( invg ` ( _I ` G ) ) = ( invg ` G ) |
14 |
1 13
|
eqtr4i |
|- N = ( invg ` ( _I ` G ) ) |