Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgpcn.j | |- J = ( TopOpen ` G ) |
|
tgpinv.5 | |- I = ( invg ` G ) |
||
Assertion | grpinvhmeo | |- ( G e. TopGrp -> I e. ( J Homeo J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.j | |- J = ( TopOpen ` G ) |
|
2 | tgpinv.5 | |- I = ( invg ` G ) |
|
3 | 1 2 | tgpinv | |- ( G e. TopGrp -> I e. ( J Cn J ) ) |
4 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
6 | 5 2 | grpinvcnv | |- ( G e. Grp -> `' I = I ) |
7 | 4 6 | syl | |- ( G e. TopGrp -> `' I = I ) |
8 | 7 3 | eqeltrd | |- ( G e. TopGrp -> `' I e. ( J Cn J ) ) |
9 | ishmeo | |- ( I e. ( J Homeo J ) <-> ( I e. ( J Cn J ) /\ `' I e. ( J Cn J ) ) ) |
|
10 | 3 8 9 | sylanbrc | |- ( G e. TopGrp -> I e. ( J Homeo J ) ) |