Metamath Proof Explorer


Theorem grpinvhmeo

Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgpcn.j
|- J = ( TopOpen ` G )
tgpinv.5
|- I = ( invg ` G )
Assertion grpinvhmeo
|- ( G e. TopGrp -> I e. ( J Homeo J ) )

Proof

Step Hyp Ref Expression
1 tgpcn.j
 |-  J = ( TopOpen ` G )
2 tgpinv.5
 |-  I = ( invg ` G )
3 1 2 tgpinv
 |-  ( G e. TopGrp -> I e. ( J Cn J ) )
4 tgpgrp
 |-  ( G e. TopGrp -> G e. Grp )
5 eqid
 |-  ( Base ` G ) = ( Base ` G )
6 5 2 grpinvcnv
 |-  ( G e. Grp -> `' I = I )
7 4 6 syl
 |-  ( G e. TopGrp -> `' I = I )
8 7 3 eqeltrd
 |-  ( G e. TopGrp -> `' I e. ( J Cn J ) )
9 ishmeo
 |-  ( I e. ( J Homeo J ) <-> ( I e. ( J Cn J ) /\ `' I e. ( J Cn J ) ) )
10 3 8 9 sylanbrc
 |-  ( G e. TopGrp -> I e. ( J Homeo J ) )