Metamath Proof Explorer


Theorem grpinvid

Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011)

Ref Expression
Hypotheses grpinvid.u
|- .0. = ( 0g ` G )
grpinvid.n
|- N = ( invg ` G )
Assertion grpinvid
|- ( G e. Grp -> ( N ` .0. ) = .0. )

Proof

Step Hyp Ref Expression
1 grpinvid.u
 |-  .0. = ( 0g ` G )
2 grpinvid.n
 |-  N = ( invg ` G )
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 3 1 grpidcl
 |-  ( G e. Grp -> .0. e. ( Base ` G ) )
5 eqid
 |-  ( +g ` G ) = ( +g ` G )
6 3 5 1 grplid
 |-  ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. )
7 4 6 mpdan
 |-  ( G e. Grp -> ( .0. ( +g ` G ) .0. ) = .0. )
8 3 5 1 2 grpinvid1
 |-  ( ( G e. Grp /\ .0. e. ( Base ` G ) /\ .0. e. ( Base ` G ) ) -> ( ( N ` .0. ) = .0. <-> ( .0. ( +g ` G ) .0. ) = .0. ) )
9 4 4 8 mpd3an23
 |-  ( G e. Grp -> ( ( N ` .0. ) = .0. <-> ( .0. ( +g ` G ) .0. ) = .0. ) )
10 7 9 mpbird
 |-  ( G e. Grp -> ( N ` .0. ) = .0. )