Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvid.u |
|- .0. = ( 0g ` G ) |
2 |
|
grpinvid.n |
|- N = ( invg ` G ) |
3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
4 |
3 1
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
3 5 1
|
grplid |
|- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
7 |
4 6
|
mpdan |
|- ( G e. Grp -> ( .0. ( +g ` G ) .0. ) = .0. ) |
8 |
3 5 1 2
|
grpinvid1 |
|- ( ( G e. Grp /\ .0. e. ( Base ` G ) /\ .0. e. ( Base ` G ) ) -> ( ( N ` .0. ) = .0. <-> ( .0. ( +g ` G ) .0. ) = .0. ) ) |
9 |
4 4 8
|
mpd3an23 |
|- ( G e. Grp -> ( ( N ` .0. ) = .0. <-> ( .0. ( +g ` G ) .0. ) = .0. ) ) |
10 |
7 9
|
mpbird |
|- ( G e. Grp -> ( N ` .0. ) = .0. ) |