| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinv.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinv.p |
|- .+ = ( +g ` G ) |
| 3 |
|
grpinv.u |
|- .0. = ( 0g ` G ) |
| 4 |
|
grpinv.n |
|- N = ( invg ` G ) |
| 5 |
|
oveq2 |
|- ( ( N ` X ) = Y -> ( X .+ ( N ` X ) ) = ( X .+ Y ) ) |
| 6 |
5
|
adantl |
|- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( N ` X ) = Y ) -> ( X .+ ( N ` X ) ) = ( X .+ Y ) ) |
| 7 |
1 2 3 4
|
grprinv |
|- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |
| 8 |
7
|
3adant3 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |
| 9 |
8
|
adantr |
|- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( N ` X ) = Y ) -> ( X .+ ( N ` X ) ) = .0. ) |
| 10 |
6 9
|
eqtr3d |
|- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( N ` X ) = Y ) -> ( X .+ Y ) = .0. ) |
| 11 |
|
oveq2 |
|- ( ( X .+ Y ) = .0. -> ( ( N ` X ) .+ ( X .+ Y ) ) = ( ( N ` X ) .+ .0. ) ) |
| 12 |
11
|
adantl |
|- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( X .+ Y ) = .0. ) -> ( ( N ` X ) .+ ( X .+ Y ) ) = ( ( N ` X ) .+ .0. ) ) |
| 13 |
1 2 3 4
|
grplinv |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
| 14 |
13
|
oveq1d |
|- ( ( G e. Grp /\ X e. B ) -> ( ( ( N ` X ) .+ X ) .+ Y ) = ( .0. .+ Y ) ) |
| 15 |
14
|
3adant3 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( N ` X ) .+ X ) .+ Y ) = ( .0. .+ Y ) ) |
| 16 |
1 4
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 17 |
16
|
adantrr |
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( N ` X ) e. B ) |
| 18 |
|
simprl |
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
| 19 |
|
simprr |
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
| 20 |
17 18 19
|
3jca |
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( N ` X ) e. B /\ X e. B /\ Y e. B ) ) |
| 21 |
1 2
|
grpass |
|- ( ( G e. Grp /\ ( ( N ` X ) e. B /\ X e. B /\ Y e. B ) ) -> ( ( ( N ` X ) .+ X ) .+ Y ) = ( ( N ` X ) .+ ( X .+ Y ) ) ) |
| 22 |
20 21
|
syldan |
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( ( N ` X ) .+ X ) .+ Y ) = ( ( N ` X ) .+ ( X .+ Y ) ) ) |
| 23 |
22
|
3impb |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( N ` X ) .+ X ) .+ Y ) = ( ( N ` X ) .+ ( X .+ Y ) ) ) |
| 24 |
15 23
|
eqtr3d |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( .0. .+ Y ) = ( ( N ` X ) .+ ( X .+ Y ) ) ) |
| 25 |
1 2 3
|
grplid |
|- ( ( G e. Grp /\ Y e. B ) -> ( .0. .+ Y ) = Y ) |
| 26 |
25
|
3adant2 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( .0. .+ Y ) = Y ) |
| 27 |
24 26
|
eqtr3d |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` X ) .+ ( X .+ Y ) ) = Y ) |
| 28 |
27
|
adantr |
|- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( X .+ Y ) = .0. ) -> ( ( N ` X ) .+ ( X .+ Y ) ) = Y ) |
| 29 |
1 2 3
|
grprid |
|- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( ( N ` X ) .+ .0. ) = ( N ` X ) ) |
| 30 |
16 29
|
syldan |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ .0. ) = ( N ` X ) ) |
| 31 |
30
|
3adant3 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` X ) .+ .0. ) = ( N ` X ) ) |
| 32 |
31
|
adantr |
|- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( X .+ Y ) = .0. ) -> ( ( N ` X ) .+ .0. ) = ( N ` X ) ) |
| 33 |
12 28 32
|
3eqtr3rd |
|- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( X .+ Y ) = .0. ) -> ( N ` X ) = Y ) |
| 34 |
10 33
|
impbida |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` X ) = Y <-> ( X .+ Y ) = .0. ) ) |