Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvinv.b |
|- B = ( Base ` G ) |
2 |
|
grpinvinv.n |
|- N = ( invg ` G ) |
3 |
1 2
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
6 |
1 4 5 2
|
grprinv |
|- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( 0g ` G ) ) |
7 |
3 6
|
syldan |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( 0g ` G ) ) |
8 |
1 4 5 2
|
grplinv |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) X ) = ( 0g ` G ) ) |
9 |
7 8
|
eqtr4d |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) ) |
10 |
|
simpl |
|- ( ( G e. Grp /\ X e. B ) -> G e. Grp ) |
11 |
1 2
|
grpinvcl |
|- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( N ` ( N ` X ) ) e. B ) |
12 |
3 11
|
syldan |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) e. B ) |
13 |
|
simpr |
|- ( ( G e. Grp /\ X e. B ) -> X e. B ) |
14 |
1 4
|
grplcan |
|- ( ( G e. Grp /\ ( ( N ` ( N ` X ) ) e. B /\ X e. B /\ ( N ` X ) e. B ) ) -> ( ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) <-> ( N ` ( N ` X ) ) = X ) ) |
15 |
10 12 13 3 14
|
syl13anc |
|- ( ( G e. Grp /\ X e. B ) -> ( ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) <-> ( N ` ( N ` X ) ) = X ) ) |
16 |
9 15
|
mpbid |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |