| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpinvnzcl.b | 
							 |-  B = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							grpinvnzcl.z | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinvnzcl.n | 
							 |-  N = ( invg ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							 |-  ( ( N ` X ) = .0. -> ( N ` ( N ` X ) ) = ( N ` .0. ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` ( N ` X ) ) = ( N ` .0. ) )  | 
						
						
							| 6 | 
							
								1 3
							 | 
							grpinvinv | 
							 |-  ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 8 | 
							
								2 3
							 | 
							grpinvid | 
							 |-  ( G e. Grp -> ( N ` .0. ) = .0. )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad2antrr | 
							 |-  ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` .0. ) = .0. )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							3eqtr3d | 
							 |-  ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> X = .0. )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							 |-  ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) = .0. -> X = .0. ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							necon3d | 
							 |-  ( ( G e. Grp /\ X e. B ) -> ( X =/= .0. -> ( N ` X ) =/= .0. ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3impia | 
							 |-  ( ( G e. Grp /\ X e. B /\ X =/= .0. ) -> ( N ` X ) =/= .0. )  |