Metamath Proof Explorer


Theorem grpinvnzcl

Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Hypotheses grpinvnzcl.b
|- B = ( Base ` G )
grpinvnzcl.z
|- .0. = ( 0g ` G )
grpinvnzcl.n
|- N = ( invg ` G )
Assertion grpinvnzcl
|- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. ( B \ { .0. } ) )

Proof

Step Hyp Ref Expression
1 grpinvnzcl.b
 |-  B = ( Base ` G )
2 grpinvnzcl.z
 |-  .0. = ( 0g ` G )
3 grpinvnzcl.n
 |-  N = ( invg ` G )
4 eldifi
 |-  ( X e. ( B \ { .0. } ) -> X e. B )
5 1 3 grpinvcl
 |-  ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B )
6 4 5 sylan2
 |-  ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. B )
7 eldifsn
 |-  ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) )
8 1 2 3 grpinvnz
 |-  ( ( G e. Grp /\ X e. B /\ X =/= .0. ) -> ( N ` X ) =/= .0. )
9 8 3expb
 |-  ( ( G e. Grp /\ ( X e. B /\ X =/= .0. ) ) -> ( N ` X ) =/= .0. )
10 7 9 sylan2b
 |-  ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) =/= .0. )
11 eldifsn
 |-  ( ( N ` X ) e. ( B \ { .0. } ) <-> ( ( N ` X ) e. B /\ ( N ` X ) =/= .0. ) )
12 6 10 11 sylanbrc
 |-  ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. ( B \ { .0. } ) )