| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvnzcl.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinvnzcl.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
grpinvnzcl.n |
|- N = ( invg ` G ) |
| 4 |
|
eldifi |
|- ( X e. ( B \ { .0. } ) -> X e. B ) |
| 5 |
1 3
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 6 |
4 5
|
sylan2 |
|- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. B ) |
| 7 |
|
eldifsn |
|- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
| 8 |
1 2 3
|
grpinvnz |
|- ( ( G e. Grp /\ X e. B /\ X =/= .0. ) -> ( N ` X ) =/= .0. ) |
| 9 |
8
|
3expb |
|- ( ( G e. Grp /\ ( X e. B /\ X =/= .0. ) ) -> ( N ` X ) =/= .0. ) |
| 10 |
7 9
|
sylan2b |
|- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) =/= .0. ) |
| 11 |
|
eldifsn |
|- ( ( N ` X ) e. ( B \ { .0. } ) <-> ( ( N ` X ) e. B /\ ( N ` X ) =/= .0. ) ) |
| 12 |
6 10 11
|
sylanbrc |
|- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. ( B \ { .0. } ) ) |