| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
grpinvpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
grpinvpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 4 |
1 2 3
|
grpidpropd |
|- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
| 5 |
4
|
adantr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( 0g ` K ) = ( 0g ` L ) ) |
| 6 |
3 5
|
eqeq12d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( x ( +g ` K ) y ) = ( 0g ` K ) <-> ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 7 |
6
|
anass1rs |
|- ( ( ( ph /\ y e. B ) /\ x e. B ) -> ( ( x ( +g ` K ) y ) = ( 0g ` K ) <-> ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 8 |
7
|
riotabidva |
|- ( ( ph /\ y e. B ) -> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) = ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 9 |
8
|
mpteq2dva |
|- ( ph -> ( y e. B |-> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) = ( y e. B |-> ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) ) |
| 10 |
1
|
riotaeqdv |
|- ( ph -> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) = ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) |
| 11 |
1 10
|
mpteq12dv |
|- ( ph -> ( y e. B |-> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) = ( y e. ( Base ` K ) |-> ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) ) |
| 12 |
2
|
riotaeqdv |
|- ( ph -> ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) = ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 13 |
2 12
|
mpteq12dv |
|- ( ph -> ( y e. B |-> ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) = ( y e. ( Base ` L ) |-> ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) ) |
| 14 |
9 11 13
|
3eqtr3d |
|- ( ph -> ( y e. ( Base ` K ) |-> ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) = ( y e. ( Base ` L ) |-> ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) ) |
| 15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 16 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
| 17 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 18 |
|
eqid |
|- ( invg ` K ) = ( invg ` K ) |
| 19 |
15 16 17 18
|
grpinvfval |
|- ( invg ` K ) = ( y e. ( Base ` K ) |-> ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) |
| 20 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 21 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
| 22 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
| 23 |
|
eqid |
|- ( invg ` L ) = ( invg ` L ) |
| 24 |
20 21 22 23
|
grpinvfval |
|- ( invg ` L ) = ( y e. ( Base ` L ) |-> ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 25 |
14 19 24
|
3eqtr4g |
|- ( ph -> ( invg ` K ) = ( invg ` L ) ) |