Metamath Proof Explorer


Theorem grpinvval

Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013)

Ref Expression
Hypotheses grpinvval.b
|- B = ( Base ` G )
grpinvval.p
|- .+ = ( +g ` G )
grpinvval.o
|- .0. = ( 0g ` G )
grpinvval.n
|- N = ( invg ` G )
Assertion grpinvval
|- ( X e. B -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) )

Proof

Step Hyp Ref Expression
1 grpinvval.b
 |-  B = ( Base ` G )
2 grpinvval.p
 |-  .+ = ( +g ` G )
3 grpinvval.o
 |-  .0. = ( 0g ` G )
4 grpinvval.n
 |-  N = ( invg ` G )
5 oveq2
 |-  ( x = X -> ( y .+ x ) = ( y .+ X ) )
6 5 eqeq1d
 |-  ( x = X -> ( ( y .+ x ) = .0. <-> ( y .+ X ) = .0. ) )
7 6 riotabidv
 |-  ( x = X -> ( iota_ y e. B ( y .+ x ) = .0. ) = ( iota_ y e. B ( y .+ X ) = .0. ) )
8 1 2 3 4 grpinvfval
 |-  N = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) )
9 riotaex
 |-  ( iota_ y e. B ( y .+ X ) = .0. ) e. _V
10 7 8 9 fvmpt
 |-  ( X e. B -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) )