Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvval.b |
|- B = ( Base ` G ) |
2 |
|
grpinvval.p |
|- .+ = ( +g ` G ) |
3 |
|
grpinvval.o |
|- .0. = ( 0g ` G ) |
4 |
|
grpinvval.n |
|- N = ( invg ` G ) |
5 |
|
oveq2 |
|- ( x = X -> ( y .+ x ) = ( y .+ X ) ) |
6 |
5
|
eqeq1d |
|- ( x = X -> ( ( y .+ x ) = .0. <-> ( y .+ X ) = .0. ) ) |
7 |
6
|
riotabidv |
|- ( x = X -> ( iota_ y e. B ( y .+ x ) = .0. ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |
8 |
1 2 3 4
|
grpinvfval |
|- N = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |
9 |
|
riotaex |
|- ( iota_ y e. B ( y .+ X ) = .0. ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( X e. B -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |