Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubcl.b |
|- B = ( Base ` G ) |
2 |
|
grpsubcl.m |
|- .- = ( -g ` G ) |
3 |
|
grpinvsub.n |
|- N = ( invg ` G ) |
4 |
|
grpinvval2.z |
|- .0. = ( 0g ` G ) |
5 |
1 4
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
7 |
1 6 3 2
|
grpsubval |
|- ( ( .0. e. B /\ X e. B ) -> ( .0. .- X ) = ( .0. ( +g ` G ) ( N ` X ) ) ) |
8 |
5 7
|
sylan |
|- ( ( G e. Grp /\ X e. B ) -> ( .0. .- X ) = ( .0. ( +g ` G ) ( N ` X ) ) ) |
9 |
1 3
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
10 |
1 6 4
|
grplid |
|- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( .0. ( +g ` G ) ( N ` X ) ) = ( N ` X ) ) |
11 |
9 10
|
syldan |
|- ( ( G e. Grp /\ X e. B ) -> ( .0. ( +g ` G ) ( N ` X ) ) = ( N ` X ) ) |
12 |
8 11
|
eqtr2d |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) = ( .0. .- X ) ) |